Parallel library software for the multishift QR algorithm with aggressive early deflation

نویسندگان

  • R. Granat
  • Robert Granat
  • Bo Kågström
  • Daniel Kressner
  • Meiyue Shao
چکیده

Library software implementing a parallel small-bulge multishift QR algorithm with aggressive early deflation (AED) targeting distributed memory high-performance computing systems is presented. Starting from recent developments of the parallel multishift QR algorithm [Granat et al., SIAM J. Sci. Comput. 32(4), 2010], we describe a number of algorithmic and implementation improvements. These include communication avoiding algorithms via data redistribution and a refined strategy for balancing between multishift QR sweeps and AED. Guidelines concerning several important tunable algorithmic parameters are provided. As a result of these improvements, a computational bottleneck within AED has been removed in the parallel multishift QR algorithm. A performance model is established to explain the scalability behavior of the new parallel multishift QR algorithm. Numerous computational experiments confirm that our new implementation significantly outperforms previous parallel implementations of the QR algorithm.

منابع مشابه

The Multishift QR Algorithm. Part II: Aggressive Early Deflation

Aggressive early deflation is a QR algorithm deflation strategy that takes advantage of matrix perturbations outside of the subdiagonal entries of the Hessenberg QR iterate. It identifies and deflates converged eigenvalues long before the classic small-subdiagonal strategy would. The new deflation strategy enhances the performance of conventional large-bulge multishift QR algorithms, but it is ...

متن کامل

The Effect of Aggressive Earl Deflation on the Convergence of the Qr Algorithm

Aggressive early deflation [1] has proven to significantly enhance the convergence of the QR algorithm for computing the eigenvalues of a nonsymmetric matrix. It is shown that this deflation strategy is equivalent to extracting converged Ritz vectors from certain Krylov subspaces. As a special case, the single-shift QR algorithm enhanced with aggressive early deflation corresponds to a Krylov s...

متن کامل

On Aggressive Early Deflation in Parallel Variants of the QR Algorithm

The QR algorithm computes the Schur form of a matrix and is by far the most popular approach for solving dense nonsymmetric eigenvalue problems. Multishift and aggressive early deflation (AED) techniques have led to significantly more efficient sequential implementations of the QR algorithm during the last decade. More recently, these techniques have been incorporated in a novel parallel QR alg...

متن کامل

Identification and Tuning of Algorithmic Parameters in Parallel Matrix Computations: Hessenberg Reduction and Tensor Storage Format Conversion

This thesis considers two problems in numerical linear algebra and high performance computing (HPC): (i) the parallelization of a new blocked Hessenberg reduction algorithm using Parallel Cache Assignment (PCA) and the tunability of its algorithm parameters, and (ii) storing and manipulating dense tensors on shared memory HPC systems. The Hessenberg reduction appears in the Aggressive Early Def...

متن کامل

Multishift Variants of the QZ Algorithm with Aggressive Early Deflation

Abstract. New variants of the QZ algorithm for solving the generalized eigenvalue problem are proposed. An extension of the small-bulge multishift QR algorithm is developed, which chases chains of many small bulges instead of only one bulge in each QZ iteration. This allows the effective use of level 3 BLAS operations, which in turn can provide efficient utilization of high performance computin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014